be used in connection with other important variables. For example, on an aircraft development project, design-related risks might be assessed in terms of their effect on weight. Three-point estimates are often used as inputs to quantitative risk analysis.

## Probability Three-point estimates are associated with probability density functions (PDFs). The two most commonly Density

 Functions
## Standard Deviations

## Confidencebased three point estimates

## Estimating hints \& Tips

Most people's intuitive three point estimates tend to be too narrow, often by a factor of at least two. Making realistic three point estimates therefore requires a well-structured estimating approach.
A key to making realistic three point estimates is to identify the sources of uncertainty involved and understand how they could combine to produce variance in risk outcome. It is also necessary to recognise that best case and worst case scenarios could be very different to the mode.
A well structured estimating approach will normally involve making estimates for the upper and lower points before moving on to estimate the mode. On projects, most PDFs might be negatively skewed (as illustrated in all the figures above). A typical ratio for (Mode - Min) : (Max - Mode) is 1:2.
A common form of bad practice is default use of planned values as Mode estimates. This transfers any bias in the plan to the risk estimates. Estimating lower and upper points as generic deviations from the Mode e.g. $+/-10 \%$, without regard to the sources of uncertainty involved, is also bad practice.

